
Performance model for “Just-in-Time” Problem in
Real-Time Multimedia Applications

R. Yang∗†, R.D. van der Mei∗†, D. Roubos∗, F.J. Seinstra∗‡, G.M. Koole∗ and H. Bal∗
∗Vrije Universiteit Amsterdam, Faculty of Sciences

De Boelelaan 1081a, 1081HV, Amsterdam, The Netherlands
Email: ryang@few.vu.nl

†Centre for Mathematics and Computer Science
Kruislaan 413, 1098SJ, Amsterdam, The Netherlands

‡University of Amsterdam, Faculty of Science
Kruislaan 403, 1098SJ, Amsterdam, The Netherlands

Abstract—Over the last few years, the use of large-scale
multimedia data applications has been growing tremendously,
and this growth is not likely to slow down in the near future.
Many multimedia applications operate in a real-time environment
(e.g., surveillance cameras, iris scans), which must meet strict
time constraints, i.e. to analyze video frames at the same rate as
a camera produces them. To meet this requirement, Grid comput-
ing is rapidly becoming indispensable. However, the variabilities
of the software and the hardware in grid environment cause
the strong burstiness in the transmission delay of video frames.
Because the burstiness is unknown beforehand, it is difficult to
determine the right sending moments of video frames. If the
time interval between sending two sequential frames is too large,
then the service utilization may be low. If use large buffer to
guarantee the service utilization, then video frames may be out-
of-date because of the long waiting time at buffer in the server
side. This problem is referred to as “Just-in-time” problem. To
solve this problem, it is essential to determine the right sending
moments of video frames, properly dealing with the trade-off
between the service utilization and the “up-to-date” of video
frames.

Motivated by this, in this paper we develop an adaptive control
method that react to the continuously changing circumstances in
grid system so as to obtain the highest service utilization on the
one hand and to keep the video frame up-to-date on the other
hand. Extensive experimental validation in our DAS-3 testbed
and the trace-driven simulation show that our method is indeed
highly effective.

I. I NTRODUCTION

Recently, multimedia data is rapidly gaining importance
along with the deployment of publicly accessible digital tele-
vision archives, surveillance cameras in public locations, and
automatic comparison of forensic video evidence. In a few
years, the digital video may produce high data rates, and mul-
timedia archives steadily run into petabytes (1015) of storage
space. To keep the pace with the demand of these applications,
the storage space asks an explosive growth to accommodate
the data in the form of video and audio. Apart from the
huge scale, it is necessary that the data is being automatically
processed within a desirable time frame. Recent results from
image analysis show that access to the content of large data
sets is a hard problem [1]. One way to deal with this is to apply
approximation algorithms, at the cost of losing useful details

and accuracy. A better solution is to exploit distribution of data
and computation over a network over compute nodes. Consider
a multi-media application using a surveillance camera. The
client sends image frames captured by the camera to the server
for content analysis. To meet time constraints, the analyzing
have to be done by several nodes in parallel. However, the
variabilities in the computation environment (e.g., network
characteristics, CPU power, memory, I/O) cause the strong
burstiness in service processing time of video frames and the
communication time between the client and the server. This
raises the need for the development of methods that react to the
continuously changing circumstances. In this context, given a
fixed amount of computing capacity, it is essential to find an
optimal way of sending the frames to the server such that
the service utilization is as high as possible on the one hand
and the frame processed by the server is kept up-to-date on
the other hand. In our paper, this problem is referred to as
“just-in-time” problem.

A simple method called back-to-back method (BBM) is to
arrange the sending moments to send a new frame exactly
after it receives a result from the server. Figure 1 gives an
illustration. Using BBM method, video frames processed by
the server is most up-to-date. However, the server is idle when
it has processed the frame and is waiting for the next frame.
In a bottleneck situation, the communication time to send a
frame from the client to the server (Tc1) and the time to send
a result back (Tc2) may be long. For simplicity, we assume
Tc1 = Tc2 = Tc. Then, the service utilization (SU ) using
BBM method is given by

SU =
Ts

Ts + 2 · Tc
,

whereTs is denoted as the service processing time of a video
frame. Obviously, if the the communication time is long, then
service utilization becomes lower.

An alternative approach called buffer storage method (BSM)
is to establish a buffer at the server side. As long as the buffer
is not full, the client is allowed to keep sending frames to the
server. When the server is busy, the frames will be stored in
the buffer before being processed. See Figure 2. Using BSM,



client

server

PROBLEM:

server is idle!

get frame 1

from camera

send frame 1

to server

send frame 2

to server

get frame 2

from camera

start parallel

calculations

send result 1

to client

Figure 1. BBM method for arrange sending moments

the service utilization can approach to100%. However, the
drawback is that the data in the buffer may be out-of-date
because of the long waiting time before being processed.

client

server

get frame 1

from camera

send frame 1

to server

send frame 3

to server

send frame 2

to server

start parallel

calculation 1

send result 1

to client

start parallel

calculation 2

buffer

frame 2&3

send result 3

to client

send result 2

to client

start parallel

calculation 3

Figure 2. ALT method for arrange sending moments

Based on the discussion of previous two methods, the
optimal strategy would be sending each (i+1)-th frame with
a delay after sending thei-th frame. The delay is exactly
the processing time of thei-th frame. For instance, if the
service processing time of the current frame is equal toTsi,
then sending the next frameTsi later than when sending
the current frame will give an optimal solution. With this
strategy, the server gets the most up-to-date frame and the
service utilization is unity. This is illustrated in Figure3.
Unfortunately,Tsi is unknown before the result of the current
frame is return to the client side. Hence, a good prediction of
the processing time of the frames is desired.

client

server

t t+Ts
i

Tc
1

Ts
i

Tc
2

Figure 3. An Optimal solution for sending video frames

In our experimental results (see Section 2 below), we
observe that predictive methods: adapted mean-based method

[2], adapted median-based method [2], exponential smoothing
method [3]–[6] and Robbins-Monro Stochastic Approximation
method [7], are all able to generate an accurate trend line
based on the processing time of previous frames. However,
for just-in-time problem, these methods are not sufficiently
optimized considering particular cases. (1) This happens when
the processing time of some frames becomes suddenly much
longer (e.g. a peak) than the expectedTs obtained by trend
line. The sudden changes break the rhythm of sending frames
and cause accumulative waiting time for all coming frames.
That makes the performance suddenly worse even after the
processing time has back to expectedTs. Figure 4 gives an
illustration. (2) Besides the random peak, we also observe

client

server

Ts
peak

t+E[Ts]

E[Ts]

t t+2E[Ts]

buffering buffering

Figure 4. All frames are affected continuously by sudden longprocess time

the processing time has periodic peaks from our experiment
results. If the service processing time ofi-th frame is predicted
as a peak, then a smart way to send(i+1)-th frame is letting
the sending time some time later to prevent the long waiting
time in the buffer. However, none of the prediction models
mentioned above can deal with peaks very well and pay
attention to utilize the periodic characteristic of the processing
time.

In this paper, based on our experimental observations, we
propose two policies to amend the particular situations. The
first one, one-before-last-measurement (BLM) policy, is to
restore the rhythm of sending frames by vanish the extra
waiting time after a few frames. The second one, peak-
prediction (PP) policy, is to find the periodic characteristic
of the peaks in processing times and then to predict when the
next peak takes place. A proposed prediction method including
BLM and PP policies provides a good solution for just-in-time
problem.

The remainder of this paper is organized as follows. In Sec-
tion II the method is formulated. In Section III the experiments
setup and the application are described, and in Section IV the
experimental results are discussed. Finally, in Section V we
address a number of topics for further research.

II. M ETHOD FORMULATION

In this section, the proposed methods are formulated based
on two important observations during experiment results. The
experiment setup is described in detail in Section III. A real-
time multimedia application called “Object Recognition” is
run to generate data that are used in our trace-driven simulation
for validating the final model. The notations used in this paper
are defined as follows.

2



• Tsi: the processing time of thei-th frame.
• Tci: the communication time of sending thei-th frame

from the client to the server.
• ti: the time point when the client sends thei-th frame to

the server.
• ri: the time point when the client receivesi-th frame from

the server.

A. Preliminary

1) Trend line: As shown in Figure 3, if we can predict
the service processing time of the current frame accurately,
then sending the next frame after the predicted time unit
should provide an optimal solution. Therefore we investigated
some conventional prediction methods, adapted mean-based
methods, adapted median-based methods, exponential smooth-
ing methods and Robbins-Monro Stochastic Approximation
methods for predicting the service processing time. We found
out based on the previous service processing time, by using
these prediction models, an accurate trend line can be gen-
erated. Figure 5 gives an illustration of the predicted service
processing time versus the measured value of running object
recognition application on 1 compute node with one CPU.

2) Periodic of the peaks: Another important observation
from our experimental results is the occurrence of periodic
peaks using large number of compute nodes. Because our mul-
timedia application [8] is implemented in Java, the mechanism
of java garbage collection [9] has influence in the service
processing time. In case of large service processing time, the
effect ofjava garbage collection can be ignored. Therefore, the
periodic peaks are not obvious. The measured data in Figure 5
is right this situation. However, when the service processing
time is small compared to the java garbage collection time,
the periodic peaks are obvious. We run the object recognition
application on 64 compute node with one CPU per node in
three different days. From these three different data sets,we
notice that there is a deterministic period of the occurrences
of some peaks. See Figure 6.

B. Method

Based on the experimental results above, we conclude that
a method to obtain a good performance in our real-time
application must have the following characteristics: (1) it is
able to generate an accurate trend line of the service processing
time, (2) it should be able to deal with outliers in the observed
processing time as soon as possible and (3) it can predict when
the next peak appears. In this section, we discuss the prediction
models and our two policies to deal with peaks in detail.

1) Prediction models: Among the predictive methods there
is a huge distinction between them in the way they handle
previous data to make the prediction. In some cases one wants
to adapt very quickly to observed changes in the data, while
there are also cases in which this behavior is not desired.

Adapted mean-based method uses arithmetic averages over
some portion of the measurement history to predict the next
measurement. In particular, the amount of history that is taken
into account depends on a parameterK, specifying the number

of previous measurements for the arithmetic average. The
parameterK is changed by−1, 0, or +1 over time based
on the prediction error. In our experiments, the initial value of
K is set to 20. See [2] for more details.

Adapted median-based methods, as described in [2], use a
portion of the measurement history defined by the parameter
K to calculate the median which is used for the prediction.
Like the previous method, the parameterK is adapted in the
same way as before. Note that the prediction of this method
is not influenced much by asymmetric outliers (e.g., a peak
in the processing time), since this does not affect the median
greatly.

In exponential smoothing, the previous measurements are
not weighted equally as in the case of a mean-based method,
but with exponentially decreasing weights as the measure-
ments get older. More specifically, denote byw(i) the weight
for the i-th previous measurement. Then,w is the following
function

w(i) = α(1 − α)i,

with α a parameter determining the rate of decay of the
function. In our experiments, we setα = 0.5. Like in the
previous methods, the parameterK determines the number
of previous measurements we want to use. In caseK >
{#available previous measurements} and in caseK < ∞ we
made sure, by scaling of the weights, that the sum of the
weights used sum up to one.

The Robbins-Monro approximation method is a stochastic
approximation method. If we denote bŷTsi the estimation
of the i-th processing time, then the estimation is updated
according to the following relation

T̂ si+1 = T̂ si + εi(Tsi − T̂ si),

whereεi is a parameter possibly depending oni. The intuition
behind the update rule is the following. In case the observed
processing time is larger than the one estimated, the prediction
for the next processing time is increased by a small amount
of that difference, and vice verse. Whenεi = 1 for all i, then
the prediction for the next processing time is equal to last one
observed. We setεi = 0.5 for our experiments.

2) BLM Policy: Our first policy to deal with peaks is called
“one-before-last-measurement” (BLM) policy. This policyfol-
lows the following steps.

(a) Thei-th job will not be sent until the result of the(i−
k)-th job becomes available to the client. Because we must
take care that the server has enough jobs to process, we can
not use the info obtained by last measurement as a predictor
mentioned by Harchol-Balter and Downey [10]. Thereforek
must be larger or equal to 2. Throughout this paper, we focus
on the case thatE[Tc] ≤ E[Ts]

2 . In this case, we setk = 2.
This implies that at most one job is waiting in the buffer at the
server side. As a result, the occurrence of cumulative waiting
time can be prevented. In the case thatTc > E[Ts]

2 , we only
need to enlarge the value ofk. Hence, fork = 2, we have the
following equation,

ti ≥ ri−2. (1)

3



0 100 200 300 400 500 600
1200

1300

1400

1500

1600

1700

1800

1900
Service processing by using 1 CPU

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

Measured value
Adapted mean−based method

(a) adapted mean-based method

0 100 200 300 400 500 600
1200

1300

1400

1500

1600

1700

1800

1900
Service processing by using 1 CPU

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

Measured value
Adapted median−based method

(b) adapted median-based method

0 100 200 300 400 500 600
1200

1300

1400

1500

1600

1700

1800

1900
Service processing by using 1 CPU

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

Measured value
Exponential smoothing method

(c) exponential smoothing method

0 100 200 300 400 500 600
1200

1300

1400

1500

1600

1700

1800

1900
Service processing by using 1 CPU

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

Measured value
Robbins−Monro approximation method

(d) Robbins-Monro approximation method

Figure 5. Trend line generated by different prediction models.

This equation implies thati-the video frame is sent after that
the result of(i−2)-th frame is received by the client. Figure 7
gives an illustration.

(b) Obviously, if the result of(i − 1)-th frame is received,
i-th frame must be sent immediately. Therefore, we have

ti ≤ ri−1. (2)

(c) Consider the difference between the send time of(i−1)-
th frame and(i − 2)-th frame. Denote the expected service
processing time and the communication time asE[Ts] and
E[Tc] respectively. IfTsi−2 > E[Ts], then it is optimal to
sendi-th frame atri−2 + E[Ts] − 2 × E[Tc]. Figure 7 gives
an example. In case thatTsi−2 ≤ E[Ts], the optimal sending
moment is atti−1 + E[Ts]. See Figure 7(b). Hence we get
the following equation,

ti =

{

ri−2 + E[Ts] − 2 × E[Tc] if ti−1 − ti−2 < Tsi−2,

ti−1 + E[Ts] otherwise.
(3)

Note using the receiving time of(i−2)-th frame to determine
the sending time ofi-th frame indirectly takes into account

the variation of the communication time between the client
and the server. Therefore, the assumptionTc1 = Tc2 is not
necessary any more. Combining Equation 1, 2 and 3, the
optimal sending time ofi-th frame is given by,

ti = min(ri−1,max(ri−2, ti−1+E[Ts], ri−2+E[Ts]−2E[Tc])).
(4)

3) PP Policy: Our second method, peak policy, tries to
predict the next outlier based on historical observations.We
define an outlier, in particular a peak, as significantly different
from the average processing time if the observation is much
larger than the average (say 1.2 times larger). Based on
the occurrences of peaks in the previous observations, we
try to predict when the next peak will occur. Motivated by
experiments, we observe that there is a deterministic period
of the occurrences of peaks. See Figures 6(a), 6(b), and 6(c)
for the experimental results. Denote byP = {i|Tsi is peak}
as the set of peaks and denote bypj thej-th element ofP . Let
k be an integer number. Ifpj −pj−1 = · · · = pj−(k+1)−pj−k

then we say that there is a deterministic period of length
d = pj − pj−1, and we expect the next peak to occur at

4



0 100 200 300 400 500 600 700
120

140

160

180

200

220

240

260

280

300
Service processing time measured at 17−July−2007

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

(a) 17-July-2007

0 100 200 300 400 500 600 700
120

140

160

180

200

220

240

260

280

300
Service processing time measured at 16−Aug−2007

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

(b) 16-August-2007

0 100 200 300 400 500 600 700
120

140

160

180

200

220

240

260

280

300
Service processing time measured at 14−Sept−2007

Job number

S
er

vi
ce

 p
ro

ce
ss

in
g 

tim
e 

(m
s)

(c) 14-September-2007

Figure 6. Service processing time taken at different times.

client

server

t
i-2

t
i

Ts
i-2

Ts
i-1
=E[Ts]

buffering

t
i-1
=t
i-2
+E[Ts] r

i-1
r
i-2

(a) The optimal sending time in case ofTSi−2 > E[Ts]

client

server

t
i-2

t
i

Ts
i-2

Ts
i-1
=E[Ts]

t
i-1
=t
i-2
+E[Ts] r

i-1r
i-2

waiting

(b) The optimal sending time in case ofTSi−2≤E[Ts]

Figure 7. BLM Policy

job numberj + d. Note thatk defines the number of previous
peaks that should have occurred equidistantly with lengthd
such that we consider the peaks as periodical events. The
optimal k is not known beforehand. Therefore, we will start
with an arbitrary value and adjust it as time evolves. Suppose
that k = 3, and we observe three peaks each having distance
d, then the method predicts that the next peak occurs after
processing ofd frames. If it turns out that the prediction is
wrong, then we increasek by 1, since probablyk = 3 was
too low. In case the prediction is correct, then we decreasek
by 1, such as to try a smaller number. To prevent meaningless
values fork, we restrictk to be in [3,∞).

Combining BLM and PP policies with one of the prediction
methods to predict service processing time, we achieve the
final method to deal with the just-in-time problem in real-time
applications.

III. E XPERIMENTAL SETUP

In a grid environment, resources have different capacities
and many fluctuations exist in load and performance of

5



geographically distributed nodes [11]. As the availability of
resources and their load continuously vary with time, the
repeatability of the experimental results is hard to be guar-
anteed under different scenarios in a real grid environment.
Also, the experimental results are very hard to collect and
to observe. Hence, it is wise to perform our experiments on
the test bed that contains the key characteristics of a grid
environment on the one hand, and that could be managed
easily on the other hand. To meet these requirements, we
perform our experiments on DAS-3 Grid test bed [12]. DAS-
3 (The Distributed ASCI Supercomputer 3) is a wide-area
distributed system designed by the Advanced School for
Computing and Imaging (ASCI [13]). It consists of 272 dual
AMD Opteron compute nodes. The compute nodes spread
out over five clusters located at five locations: VU University
Amsterdam (VU), Leiden University (LU), University of Am-
sterdam (UvA), Delft University of Technology (TUD) and the
MultimediaN Consortium (UvA-MN). Unlike its predecessor,
DAS-2, DAS-3 is rather heterogeneous in design. Table I
provides an overview of all 5 clusters.

In our experiments, we use the VU-cluster to carry out our
real-time application called “Object Recognition”. The “Object
Recognition” application is implemented in a Robot Dog. It
consists of the following operations:

1) An object is held in front of the dog’s camera. The video
frames or images are captured by the camera and sent
to the servers.

2) The video frames are processed in parallel on the
available compute nodes.

3) Based on the key characteristics calculated from the
video frames, a database of learned objects is searched.

4) In case of recognition, the dog reacts accordingly.

Before the processing of video frames, the connection between
the client (the application) and the communication server (a
compute node) is established. As long as the link is connected,
the client can send a video frame to this server. The received
video frame is scattered by this server into many pieces
according to the available compute nodes. Normally, each
compute node gets one piece of data segment for processing.
The computations at all compute nodes take place in parallel.
When the computations are completed, the partial results are
gathered by the communication server again and the final
result is returned to the client. The time to process a video
frame is defined as the service processing time. The individual
values of Tsi are collected as data source for our trace-
driven simulation. In our simulation, the service utilization and
total waiting times are calculated by using different prediction
models in combination with BLM policy and PP policy.

IV. N UMERICAL RESULTS

In this section we present the results of our experiments
done in the DAS-3 environment. The results are also used as
the input for our trace-driven simulation in order to validate
our final method for determining the sending moments of
video frames from the client to the server. In our experiments,

the object recognition application is run on 64 compute nodes
with 1 CPU per node.

First, we apply BBM method (See Figure 1) to our object
recognition application for arranging the sending times. In our
experiment, it is shown that the average service processing
time (E[Ts]) and the average communication time (E[Tc])
between the client and the server are equal to 143.629ms
and 11.694ms respectively. In this case, the server utilization
is about 85%, and the average waiting time per frame is 0.
Consider that the service utilization using BBM method is
given byE[Ts]/(E[Ts] + 2 · E[Tc]). That implies that when
Tc is negligible, the BBM method approaches the optimal
strategy. However, in the bottleneck situation whereE[Tc] is
long relative toE[Ts], the BBM method will perform bad.

The server utilization can be increased by sending the
frames faster after each other. However, if a sudden change
(a peak) of service time takes place, all incoming frames are
affected. A worse situation is when a series of long service
time occur, the waiting time of the frames increase rapidly
because the time gaps can be accumulated. In our experiments,
we used simulation to evaluate the impact of changing the
time interval between sending two sequential frames. The time
interval is reduced in 5 steps according to Table II.E[Ts] and
E[Tc] in Table II are adjusted by one of the prediction models.
Because Figure 5 shows that all prediction models are able to
generate accurate trend line. Therefore, in this paper, we only
choose one of them: the exponential smoothing method, as
a representative prediction model to use. In Figure 8, it is
shown that the average waiting time increases enormously as
the service utilization approaches 100%. Hence, the predicition
models are not suficient for our just-in-time problem.

Table II
TIME INTERVAL BETWEEN SENDING TWO SEQUENTIAL FRAMES

Simulation index Time interval
1 TsBBM

2 2E[Tc] + E[Ts]
3 1.5E[Tc] + E[Ts]
4 E[Tc] + E[Ts]
5 0.5E[Tc] + E[Ts]
6 0.375E[Tc] + E[Ts]
7 0.25E[Tc] + E[Ts]
8 E[Ts]

Using our final model (one of prediction models in combi-
nation with BLM and PP policies), we can achieve high service
utilization on the one hand and keep the average waiting time
low on the other hand. By using the exponential smoothing
method with our policies, we get the service utilization to
about 98%, average waiting time per frame to around 7ms.
Define the waiting time percentage (WP) as

WP =
total waiting time

total waiting time + total service processing time
.

Then we obtain WP around 3.5%. Because of lower value of
WP, we are allowed to compare the performace of our final
mehtod to BBM method by looking at the service utilization.

6



Table I
OVERVIEW OF NODES

Cluster Nodes Type Speed Memory Storage Node HDDs Network
VU 85 dual dual-core 2.4 GHz 4 GB 10 TB 85 × 250 GB Myri-10G and GbE
LU 32 dual single-core 2.6 GHz 4 GB 10 TB 32 × 400 GB Myri-10G and GbE
UvA 41 dual dual-core 2.2 GHz 4 GB 5 TB 41 × 250 GB Myri-10G and GbE
TUD 68 dual single-core 2.4 GHz 4 GB 5 TB 68 × 250 GB GbE (no Myri-10G)
UvA-MN 46 dual single-core 2.4 GHz 4 GB 3 TB 46 × 1.5 TB Myri-10G and GbE

0.8 0.85 0.9 0.95 1
0

200

400

600

800

1000

1200

1400
Average waiting time using 64 compute nodes

Service utilization

A
ve

ra
ge

 w
ai

tin
g 

tim
e 

(m
s)

Figure 8. Average waiting time using 64 compute nodes

Define the gain in service utilizationGain(SU) as follows,

Gain(SU) =
service utilization using final model
service utilization using BBM model

. (5)

Figure 9 shows the gain of our final method related to BBM
method for different values ofTc

Ts
. In this figure, we notice

0 0.2 0.4 0.6 0.8 1
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
Gain in service utilization

E[TC]/E[TS]

G
ai

n 
in

 s
er

vi
ce

 u
til

iz
at

io
n

Figure 9. Gain in the service utilization

that the gain in utilization is almost linear inTc
Ts

. This can be
explained by the fact that the service utilization in the final
model is very close to1 and the service utilization belonging to
the simply strategy can be approximated byE[Ts]/(E[Ts] +

2 · E[Tc]). Hence, Based on Equation 5, we have

Gain(SU)≈
1

Ts/(Ts + 2 · Tc)

= 1 + 2
Tc

Ts
.

Therefore, the gain in the service utilization is nearly increas-
ing linearly with Tc/Ts.

The last comparison is done to evaluate the benefit brought
by our policies. The prediction method is using the exponential
smoothing method. we compare the performance of our final
method to the prediction method by looking at the average
waiting time. Define the gain in the average waiting time
Gain(w) as follows,

Gain(w)=
average waiting time using final method

average waiting time using the prediction model
.

We get the results shown in Figure 10. The reason why

0 0.2 0.4 0.6 0.8 1
1

50

100

150

200

250

Gain in the average waiting time

E[TC]/E[TS]

G
ai

n 
in

 th
e 

av
er

ag
e 

w
ai

tin
g 

tim
e

Figure 10. Gain in the average waiting time

the final model can gain so much, can be explained by the
following example. Assume during processing, only one peak
takes place and after that peak there are still 100 frames need
to be processed, then the use of prediction models causes all
following 100 frames to be delayed by the peak. But using
our final model, there is only 1 following frame affected by
the peak. After that, the sending times of the next 99 frames
are corrected. Thus no accumulative error happens. Therefore,
we conclude that our policies are indispensable and effective
for just-in-time problem.

7



V. CONCLUSIONS AND FURTHER RESEARCH

In this paper we explored the just-in-time problem that
requires the high service utilization on the one hand, and
to keep the video frame up-to-date on the other hand. Using
BBM method, the waiting time is zero. However, the service
utilization will be worse if the communication time between
the client and server becomes longer. Applying the predic-
tion models to this problem, the service utilization can be
increased. However, at the same time, the increasing of the
average waiting time of a frame is even faster. That can be
explained by the fact that none of the prediction models pay
attention to dealing with the peaks of the service processing
time. Therefore we developed two policies, BLM policy and
PP policy. Using the first policy, the cumulative waiting time
can be avoided by postponing the send time of the new job
when a peak is detected. The second policy is used to predict
the possible peaks. If we can predict the moment when a
peak occurs, then we can manage to send the new job in
the right time. Combining these two policies with any of the
prediction models, we achieve the final method to solve just-
in-time problem.

Our final method is validated in our experiments. We have
illustrated the experimental results above. Moreover, we have
extensively investigated the gain of our final model relatedto
the BBM model and the prediction methods without using our
policies. From our experimental results, it is shown that our
final method outperforms those methods.

REFERENCES

[1] C. G. Snoek, M. Worring, J.-M. Geusebroek, D. C. Koelma, F.J.
Seinstra, and A. W. Smeulders, “The semantic pathfinder: Usingan
authoring metaphor for generic multimedia indexing,”IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1678–
1689, 2006.

[2] R. Wolski, “Forecasting network performance to support dynamic
scheduling using the network weather service,”in Proc. International
Conference on High Performance Computing (HiPC), pp. 316–325,
1997.

[3] R. Brown, Statistical forecasting for inventory control. McGraw-Hill
New York, 1959.

[4] ——, Smoothing, Forecasting and Prediction of Discrete Time Series.
Prentice-Hall, 1963.

[5] C. Holt, “Forecasting Trends and Seasonals by Exponentially Weighted
Moving Averages,”ONR Memorandum, vol. 52, 1957.

[6] P. Winters, “Forecasting Sales by Exponentially Weighted Moving
Averages,”Management Science, vol. 6, no. 3, pp. 324–342, 1960.

[7] H. Kushner and G. Yin,Stochastic Approximation and Recursive Algo-
rithms and Applications. Springer-Verlag, 2003.

[8] F. Seinstra, “User Transparent Parallel Image Processing,” Ph.D. disser-
tation, University of Amsterdam, the Netherlands, 2003.

[9] online, “http://www.artima.com/underthehood/gc.html,” 2007.
[10] M. Harchol-Balter and A. Downey, “Exploiting process lifetime distri-

butions for dynamic load balancing,”ACM Trans. Computer Systems,
vol. 15, no. 3, pp. 253–285, 1997.

[11] M. Dobber, G. Koole, and R. van der Mei, “Dynamic Load Balancing
for a Grid Application,” in Proc. International Conference on High
Performance Computing (HiPC), vol. 1, pp. 342–352, 2004.

[12] online, “http://www.cs.vu.nl/das3/,” 2007.
[13] ——, “http://www.asci.tudelft.nl,” 2007.

8


